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1. INTRODUCTION

n~

Let : {O,l 1n (0,1} be a binary coherent structure function and

let h: [0,In [0,1] be the corresponding reliability function (see
. , =

Barlow and Proschan (1975a), Chapters 1 and 2). The reliability

importance of component i is defined as

1() h(Q) -

) - h(li,p) - h(Oi,p)

(i=1,2,...,n), writing (rBi.p) = (PI ... Pi-l' Pi+ 9 .... ,pn) where

0pi = P{Xi=1 } and where XP .... 9Xn are independent binary random variables

denoting the states of the components of . This definition is due to

Birnbaum (1969); see Barlow and Proschan (1975b) and Natvig (1979),

(1984) for some alternative approaches. Various authors have proposed

extensions of this concept to the multistate case (e.g. Barlow and Wu

(1978), Griffith (1980), Natvig (1982), Block and Savits (1982)), but a

general theory of reliability importance for structure functions on

domains other than O,1} n has yet to be developed. In this paper, we

present a definition of reliability importance for continuum structure

functions (CSFs), i.e. mappings of the form y: A'- [0,1], where A . [0,1 ]n,

which are nondecreasing in each argument and which satisfy y(O) = 0 and

y(l) = 1 where Z denotes ( See Block and Savits (1984) and

Baxter (1984), (1986) for further details of CSFs. The reliability

importance, Ri(a) say, of component i (i=l,2,...,n) will depend on the

state a (O<c<l) of the system. Our main results are conditions on y under

which lim Ri(a) = lim R.(a) = 0 and conditions under which Ri() is positive.
1 c- .-.1-1

,- 4- -
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We shall make frequent use of the following sets:

U cc {xEA•y(X)>c .

L { XEAy(x)<,4}

P = {xEAjy(x)>ct whereas y(,)<ct for all X~x}

K {xEAjy(x)<.-- whereas y(X)>cL for all }.1.,

where Z<(>)x means that X < (>)x but that y x.I

2. KEY VECTORS

The motivation for our definition (below) is most readily understood

by observing that one can write

W() P{~(X)l IX =1} P{BX)1IX.=0},

i.e. 1(i) i s the 'probabiIi ty that repairing component i will restore

0 a failed system to the operating state (or, equivalently, that the failure

of component i will cause an operating system to fail). A possible

generalisation of I(i) to the continuum case would be to regard part of

0 the unit interval, say [O,c) (O<a<lI), as corresponding to the failure

states of the system and to regard [cx,l] as the operating states, in which

case one could define the reliability importance of component i (i=l,2,...,n)

to be

I > -°
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Consideration of the CSF y(x I ,x2 ) = xlX2 suggests that this definition is

not wholly satisfactory: if xl = x2= E [a,\/E) (Q0a<l), then neither

component is in the failed state even though the system itself should be

regarded as failed. This difficulty may be circumvented by replacing

a by a suitably chosen element of 3U ; considerations of symmetry indicate

that the vector chosen, called the key vector, should also lie on the

diagonal of the unit hypercube. Hence, before proceeding to a definition

of reliability importance for CSFs, it is convenient to define and study

the key vector of U
Q

Definition

Let H = {r210<c<1} be the diagonal of the unit hypercube. We say

that the vector 6 6(a) = HnDU is the key vector of U and we call

6 the key element.

Lemma 2.1

The CSF y is right (left)-continuous if and only if each U (L

is closed.

Proof: A CSF is right (left)-continuous if and only if it is upper (lower) - I
semicontinuous which is the case if and only if each Uc(Lc) is openai a

(Royden (1968), p. 161). -.

Theorem 2.2

For any CSF y, the key vector always exists and, if y is continuous, -:

y(6) = a for all a E (0,1].

-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ****.-*'-.'''. "i -' .- - " . - '- .".,'... ' . -'.*.%--'" .. --."," ,-," ,." -"-". -- ," -'..
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Proof: To show that the key vector exists for any CSF, it is sufficient

to show that Hn3U 0 0 for all a E (0,1].

Let y be an arbitrary CSF. Then 1 c U for all a E (0,1] by definition, ,;-

so U a 0 for all a E (0,1]. If aU U , it is immediate that Hn aU a 0

since 1 E H nU for all a E (0,1]. Suppose that 3U is a proper subset

of U and consider A' A-AU . Since Uc and U are disjoint and DU isa a a a

a proper subset of Ua, it follows that A' = (ucia) - au = U CU(U au
aa a a

is a separation of A', i.e. A' is a disconnected set. Now suppose that

H n 'Ua = 0 for some a E (0,11. Then, for all E H, 0 J Ul so H c A'

Clearly, H is connected. Since A' is a disconnected set with separation
OcU (U --U ) H must be properly contained in either U or U -U Since
a a a a a a.

U is a proper subset of Ua and since 1 E Ua it is obvious that I U,

i.e. 1 C U- U, and thus Hn (UQ-DU) 0. Further, since a E (0,1],

0 E Ua, so HI 'a 0. This is a contradiction to the assertion that H must

be properly contained in either c or U -AU Thus HfnU Ofor allcX a " a ai.i:

a E (0,11 for any CSF, as claimed.

We now show that if y is continuous, then y(6) = a. Since, by

continuity, C CU C Ua, it follows that y(6) > a. Suppose that there

exists an a E (0,1] such that y(6) > a. Since 6 E DUa , for any c > 0

and for all n we have 5 - 2-n & H whereas 6 - 2- n & 9Ua, so

6 - 2-n F Uc  i.e. 6 - 2 -n e L However, lim (6-2-n e) f L so L is
n-ao"o

not closed. Hence, by Lemma 2.1, y is not continuous. This is a con-

tradiction and so y(A) = oc as claimed.

This completes the proof. ".- --p
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Since the key vector 6 exists for any CSF and for any a E (0,1],

and since A is symmetric about H, we define reliability importance as

follows.

Definition

The reliability inmprtance Ri(a) of component i at level a E Im*- { O}

for the CSF y is defined as

Ri (a) P{y(X)>alXi>61 - P{y(X)>alXi<61

where X is a random vector and where 6 is the key element of Ua. (Im y

denotes the image of y.)

Remarks

1. We may interpret Ri(a) as P{y(X) > c< iff Xi > "

n

2. Replacing A and - by {O,l} and q, a binary coherent structure function,

respectively, in this definition yields the (Birnbaum) reliability importance

of component i, and hence the above definition is a direct generalisation

of reliability importance in the binary case.

I•

3. BOUNDARY BEHAVIOUR

In this section, we derive conditions under which lim Ri,) =

lim Ri(t-) = 0, i.e. under which component i does not affect the state of

the system when the latter is at one of the etrem'i of its range. The

-9
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following notation will subsequently prove useful:

L(Y) = fEI X

f .(a) Pfy(x)>alx.>6}

=ia Pfy(X)>alXi6

where X is a random vector so that R.(c0.) f f((X) g(X

Lemma 3.1

Let y be a continuous CSF and write P {yt tET((x)l. Then

LIU U(yt).
StET(a)

Proof: See Block and Savits (1984), Theorem 2.

Proposition 3.2

For any CSF y,

i) lim U C( A0 where AO ={XEAIy(x)>0}

(ii) lim Ua A, where A, {xEAIY(x)=I}.C(

Proof: Since y is nondecreasing, U U whenever a < a~.

(i) For given a E (0,1), let N be a positive integer .1ifyn

Further, let a > a1 > a2 >... > 0 be a refinement of [0,a) where

am=]/(N+m). Then the sequence {UAN) is increasing with limit

m= 1



7

lim U : lim U1AN+m) : m 1/N+m) We show that N+m) : AO.

Let x C U U ; then x E U for some ni so that y(x) > 1/(N+n) >0,
m J AN+m) JA N+m)

i.e. xE A09 and hence U U/ )  AO . Conversely, let x E A Then
m=l 

.-
(N--11-

y(x) = B for some B > 0 and there exists an integer N' such that
1 1

< p, and an integer m such that N+m > N' so y(x) = > - > I/(N+m)N ' N

and x E U hence A0  U U

(ii) The proof is similar. l l/(N+Ifl)

Theore,: 3.3

Suppose that y is a continuous CSF and that X , .... Xn are independent,

absolutely continuous random variables.

(i) If for all C P2' y. = 1 for some j f i, then liim R.(0) = 0.
( --l 1." .. ::

(ii) If for all w E K0 , w 0 for some j f i, then lir Ri(cx) 0.

Proof: Since y is nondecreasing, for any o E (0,1]

P. XEU I X =01 < f. (C) < P{XCU I Xil}

and

PixUa IX.=O} < gi(o) < P{XEU IX...( 1 t _ 1

Thus, if we show that lim P{XEU IXi=I, = 0 under the hypothesis of (i),

then lim f.() = lim g.(a) = 0 so that lim Ri(a) 0. Further, if we show
1 a-~1 1 -i-.-

01.:• .

--------------------------------------------------------



jthat lrn P{XEU IX.=01 1 under the hypothesis of (ii), then

lim furnli g.(cx) =1 so that lim R.(ci) 0. '

a-.u a-tv

(i) Since, by Proposition 3.2, lrn UC = A, ( xEAly(x)=1}, it follows

from the continuity of probability measures that lrn P{XEU IX.=1}

PKXEA IX.=l1. We show that P{XEA Ilx= = 0. at

Define P3 = {YP1 ,j/i} and write p3  {4,ET'1. by

hypothesis, the Pg's (jfi) form a partition of P. Define

A. (J U(X ), ji. Then, by Lemma 3.1, A1  U1  U Ai, so
IE~i ji

PfXEA1IX.=ll P{XE J AjliX=l}.

j~i

By the inclusion-exclusion principle,

n-i
Pf XEAl Xi =I1

where i2PfXEAk nA k n. .nA k IX . 11.
l<k <k <.. .<k<n-1 1 2 z.

k./i for j=l,2,.. .,

We show that T, 0.

By definition, l 'P{XEA IX.=l}.

Le q inf ' q~j, q=l,2,...,n and j-. ),"'Iz
TET(j3

and let Q. 1 c,] .. l4}.L.l...-F,1 where the subscript

jon fl) indicates that this is the i th term in the product. We claim
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that A. C Q. Let X E A. Then x E U(XT) for some T E 1(j), and hence -

3 3, 3 *J
> .and yj= 1, so that xj= 1 and x,~ z q for q=l,2,...,n, q # j.

Thus x. 1 and x > F. for q=l,2,. .. ,n, q j, from which it follows

thatx CQ. This holds for all x C A., so A. c Q.. Hence

7T P{XcQ1iX 1 }
ji

-7P Iix)EQ iJ

- ~ ~ . .. nrvj9 x.=1,x. > ,.X-3 J- j+l t j Xn

-[ fx X>%YJPfXrl by independence
j~i kfj k

-0 since each X. is absolutely continuous,

'o 0 as claimed.

*Since, for any 2, , i 1  0, we see that P{XEA1 I =Ul 0

as claimed.

* (ii) The proof is similar. L
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4. A CONDITION FOR POSITIVE RELIABILITY IMPORTANCE

In this section,we derive a condition under which the reliability

importance Ri(ca) is positive for a C (0,1).

Lemma_4.1

Let be Lebesgue measure on IRO Then

(i Uy} 0 if and only if yi= 1 for some i=l 2,...n

{fL(yj} 0 if and only if yi = 0 for some i=l,2,...,n

(ii) ~U U(Xt)' 0 if and only if .,',U(yt)) 0 for all t E T

* tcT

1U L(Xt)! 0 if and only if '.{L(Zt)} 0 for all t E T

tc T

where T is an index set.

Pro of: (i) This is trivial.

(ii) Suppose that \)fU U(y )1 =0 and that, conversely, there exists some
tET

t' C T su~ch that ,)tU(Yti))}, 0. Then .)IU U(yt)}' vfU(y .)1 0. a
tc T

* contradiction.

Suppose, now, that v{)U(yt))1 0 for all t E T. Let (011 n

clearly Kx1 0. Let x C U U(vt); then x c yt for some t E T.

Since MUYt)l 0 for all t E T, it follows from (i) that 1 for some

i=1,2,...,n. Thus, by definition of U(y~) x > y~ implies x. 1, i.e.

x c A". This holds for all x c U u(yt), so U u(,xt) c A'and hence
tET tET

*~ ~Uu(yt)' 0.
tC T



A similar argument shows that v{U L(yt)} : 0 if and only if
tET

= 0 for all t E T. -.

Theorem 4.2

The distribution function F is absolutely continuous if and only

if < v where v is Lebesgue measure and where i is the induced Lebesgue-

Stieltjes measure satisfying p{(--,x]} = F(x) for all x € F.

Proof: See Billingsley (1979, p. 367).

Proposition 4.3

Let y be a continuous CSF. If v{U} > 0 for a E (0,1), then

6 E (0,1) where 6 is the key element of Ua.

P-roof: We show that 6 {0,1}. Suppose that 6 =0 for a E (0,I).

Since y is continuous, 6 = 0 E 3U C U , and so y(O) > a > 0, a

contradiction to the definition of y.

Suppose, now, that 6 = 1 for a E (0,1) and let A" = A -(0,1) n

We show that U c c". It is sufficient to show that for all x E U as

xi = 1 for some i=1,2, ...,n. Suppose, conversely, that there exists a

vector x E U such that x. < 1 fo," all i=l,2,...,n. Then F =

11rax(x I ....xn) < 1 and E H n U, in contradiction to the assumption that

6 1 I E H n U. Hence, for all x E U , xi = 1 for some i=l,2,...,n so

that Uc A". Since (A"} 0, we see that v{U } = 0, a contradiction . . *'-
"

to the given hypothesis. ] '

e.. ..... .
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We introduce the following notation for future reference. Let

D. D.(6) [Olx .[0l[,l.[,]..[,1

E E.i(6) =[0,l1x. ..x[0,l]x[O,6) ix[0,l~x. .. 4x0,l1

~th
where the subscript i labels the i term in the product.

Theoremr 4.4

Let y be a continuous CSF such that \U} >0 for all a E (0,1)

nn

*independent, absolutely continuous random variables. Then R .(a) =0

for aE (0,1) if and only if y. 0 for every E P( for which v{U(,y)} > 0.

Proof: Define the induced Lebesgue-Stieltjes measure P x PoX.

Observe that, since, from Proposition 4.3, the key element 6 E (0,1),

and since X. is absolutely continuous, it follows from Theorem 4.2 that
1

P{Xr--6 1 0 and P{X i<61 > 0. Write P = {yt,tET(a)}. Then, from

Lemma 3.1, U U U(yt); this is clearly a Borel set and so we can

write

f.(c ~ ~ ~ t n Di LIU 4)l /Pf X1>6}
.tET(ct)

*gi(~ T U~ 1) u(Xt) n Ei /P{Xi<61.
tET(Cx)

"If" Define P1  XPy~ for all i=l,2,. . .,

*,t = {yEPjyil for some i=l,2,...,n}

........................ . . ... ... .... ... ... ...
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and write P1 a {y,,ZEL(c)} and P.2  fy{S,SES(ct)} for suitable index sets

L~a an S~). Then, from Lemma 4.1(i), v{U(x)I > 0 for all Z E L(aL)

and v{U(ys)} =0 for all s E S(ca), so, from Lemma 4.1 (ii),

(4.1) v( U u(X5)I 0.
SES (CO

Now

P U u(Xt) nDi I
-~tET(cx)1

* - U U(yQ) 1u U U(y's)]n DiI
kEL(ca) SES(O.)

-PY{ U U(X n Di}+ PX U U(Xs) n Di
ZEL (a) -SES(a) 1

T U U(y )n U UQ) n Di}.

Consider the second term in this sum; clearly

P~~ U' u(Ys) nDi I < XI U U(X5)} 0
SES (a) -SES(ca)

from (4.1) and Theorem 4.2. Similarly, the third term vanishes, and hence

T U U(Xt) n Di I PX{ U u(X,) nDi 1.
tET(a) -~ QEL(ci)

Since, by hypothesis, yj 0 for all yE Pal, U(y) must be of the

f ormn

....................................... .. ... .ln"
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and so

PX'£ UE U(,) n D,}

= P U) 0 jx > y Iflxi >6}

= ( U/ l fx. > y .}}P{X. > 6}by independence.
9,EL(ci) j/i -1

Thus,

(4.2) f 1(c~ = ~ EL(a) j/i

By a similar argument,

px U u(Xt) n E1 I
t~ tETc)

=P[ U U(yO u U U(y )In E.1
x REL(.t) SES cL) 1

=Pit U U(y )nE.

0 = P (fx ~ n> y {X.<6}
-V EL()ji1

=pit U C) (x~ > y .}}P{X.}
-~ZEL(,,) j J 9i

Thus,

(4.3) g.(lx) P( U (*'{X. > y9,.}ZEL(t) j~iJ
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From (4.2) and (4.3), we see that R.(ci) =0 as claimed.

"Only if" Since, by hypothesis, v[U I > 0 and since, by Lemmia 3.1,

U= U ~t), we see that v( U U(yt)) > 0. Thus, by Lemma 4.1 (ii),

there exists some t' E ~)such that v{U(yti)) > 0. Write

P oa {yEP G I{U(Y)}>01 = {ts,t'ET-(a)1

Pc~ fEP IvtU(y)}=0} ={ 4 ,wEW(ci)1, say.

0~a Thn(ad

ThenP ad P form a partition of P .It is sufficient to show that

if R.(~ 0, then y. 0 for all E P
1 1a

Suppose that there exists a vector E~ P~ such that yi 0. Since

v{U(y)} -' 0 for all ,E Pa' it follows from Lemma 4.1(i) that yj I

for all j=l,2,.. .,n and so 0 < y. < 1. Define the partition

Po Pca U Pca U Pca where

al I

=a fYEP.,J\){U(y))>O, Oyi-O {y,.E(E)}

fyPv{U(y)j>O,6 ,,Eaj sy
P'a = _ _yi'iJ {fmMy ~ },sy

Then, clearly,



16

Pfy(X)>a,X1> 6} PX{UcflDi}

P [f U U(/) U U u(Y5) U U U(y ,)}nD.]11.
Z~EL(Ct) SES(OL) MEM(CO) '

Px t U U(Yd) u U U(4)nY
ZECL(c.-) SES (cc)

P[fr{X Uy I .nX.>6} 1 U {X .}fnl{X.>6}}J.
9.EL (a) jzi j -jSES((O) ji l 5

Since, by the definitions of P~a and Pa2 {Xi>*Y~ nl {X1>6} =

{X.>y I} n {X >6} I= {X.)}it follows from the independence of the X.'s
1- si 1-1-

that

P IU nD I > P[ u nf C x > j u n/ (1 {y 5 }]P{X >6},
x (9 EL(a) j~i j - j SES(o) j/i Vs

and hence

(4.4) f, ((x) P[ Lu nlix v ,j L) (~xg 5  .
REoLG 1) j~ SES(x) ~j~i j Ys

By a similar argument,

P({f(x)>-., X- 6 P {UnE I}

PX[f U U(y9) U U U(Y) u U U(y}n E~]
2, EL(ci) stS (a) -s Er1( ;

Recall that, by the definition of P ca3 6 y i for all Yj E PcAa3' SO

U U(y )nE. 0, and hence .-

(4.5) P {U nE} = f~ LU MUY )nE.} u U MUY )nE.)}}.
E L (,x) SE 1 5E(rd S
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By the definitions of P and E., U(ys )nE. is of the form

£yi1]x... X~ysi 11s,)[siilx"x~nl for all s E S(cx).

Let

ES= s~~ .. xY~ 1lix06.Y~ +1' l~x ..XLy sn ,l]

and

Es [Ysr ,1]x .xLy 5 ,ill[OYsi)xly5 i+l ,lx...xLy,,n'l

for scS(c). Then Es E= u[(s ~j and vsI> 0 and vM s i>0

It thus follows that

(4.6) p[ L U(y n )E.} U E]

=Px[ U(Y n E.}u V E u{ U !(y)n E~)
x EL I S ES(ax) S SES (cx)

=px U U (y, ) E1u U U(y )nE.] + P f Ui EP
-S~~a ES (cx) S ES(ot x )

-x i U U(y z)nEi u f U U(y S)nEj})n U E']
,- CL((,) - 1 SES(a) ' sCS(Q)

Px~f U U(y )nE.}ufU{ L U(y )nE.}] + 11{ x E S
VEL(ol) SE S sE(01) 1 - 5ES(cx)

- pxl~ U U(yQ )n Ei n UJEs] since U(ys5 )n Ein Es'

for all SES(cx).

LClaim:, P{ 1)U E} P x[( U U(y )nEiJ n U E;1 >0.
-SES(cx) 9EL(ax) SES(ot)

r7
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Proof of claim: We show, equivalently, that

P U) )nEi }c n U E'} >0.
ZEL(00 SES(a) 5..f.

Since U U(X,) AEi U ,( it follows that ~
ZEL(ca) ZE L(aL)

{U UQX,)nE1  U, and hence

c

> VU n'}for each SES(a).

Consider the vector y' =(0.,y ) E A for S E S(a); clearly E' E

Since U is closed, by virtue of the continuity of y, Ucis open, so

cc

Define P' [yj 1 x ... xEY 'z l; clearly, E" UCOnE' . Thus

a 5

\4{U E') > vtE"} > 0, i.e. v{{ U U(y n In U Es>0,oth ,
ZEL (a)SES (a)

by Theorem 4.2, P [{ U U(y )nE.1c n U E'] > 0.
S9E L(,A) 1 SW)

This completes the proof of the claim.

It now follows from (4.6) that -

P~x U U(y )nE.) u U E ]
ZEL(cx) 1 SES(cx)
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> 'X[ U u(Xz)nE.} u{ U U~x~n~]
- EL(Ct) 1 SES (c±0 ZIn

Observe that

P U U(y,)nE,} u U E
-~ZEL(ca) sES(a) S

IZEL (Ct) j~i 1R' i ES(cx) j~i s

-P[ U .1- U U ('{x.-jy .}]P{x4<6}

by independence, and so from (4.5) .-

(4.7) g.(i < P[r ni ix >VI .1 I U ({x~y.]
19EL(a) j~i i 'i SES(CO) j~i j- 53

Thus, by (4.4) and (4.7), R.(cx) > 0, thereby contradicting the assumption

that R.(a) = 0.

This completes the proof.

Corolj1ary 4.5

Let y be a continuous CSF such that vIU.4 >0 for all a E (0,1)

and suppose that Xl.., n are independent, absolutely continuous random

variables. Then R.i(a) > 0 for ax E (0,1) if and only if y1  0 for some

y P~ for which v{U(y)} > 0.



7-~~~~. -77-77R •77.-7

20

REFERENCES

BARLOW, R.E. and PROSCHAN, F. (1975a). "Statistical Theory of Reliability

and Life Testing", Holt, Rinehart and Winston, New York.

BARLOW, R.E. and PROSCHAN, F. (1975b). "Importance of System Components

and Fault Tree Events", Stoch. Proc. Applics., 3, 153-173.

BARLOW, R.E. and WU, A.S. (1978). "Coherent Systems with Multi-State

Components", Math. Operat. Res., 3, 275-281.

BAXTER, L.A. (1984). "Continuum Structures I", J. Appl. Prob., 21,

802-815.

BAXTER, L.A. (1986). "Continuum Structures II", Math. Proc. Camb. Philos.

Soc., 99 (to appear).

BILLINGSLEY, P. (1979). "Probability and Measure", John Wiley, New York.

BIRNBAUM, Z.W. (1969). "On the Importance of Different Components in a

Multicomponent System". In Multivariate Analysis II ed. P.R.

Krishnaiah, Academic Press, New York, 581-592.

BLOCK, H.W. and SAVITS, T.H. (1982). "A Decomposition for Multistate

Monotone Systems", d. Appl. Prob., 19, 391-402.

BLOCK, H.W. and SAVITS, T.H. (1984). "Continuous Multistate Structure

Functions", Operat. Res., 32, 703-714.

GRIFFITH, W.S. (1980). "Multistate Reliability Models", J. Appl. Prob.,

17, 735-744. - -

NATVIG, B. (1979). "A Suggestion of a New Measure of Importance of System

Components", Stoch. Proc. Applics., 9, 319-330.

NATVIG, B. (1982). "Two Suggestions of How to Define a Multistate

Coherent System", Adv. Appl. Prob., 14, 434-455.



21 ,-.- ..

NATVIG, B. (1984). "New Light on Measures of Importance of System

Components", Unpublished Report, University of Oslo.

ROYDEN, H.L. (1968). "Real Analysis", Second Edition, MacMillan,

New York.

: . ti

. " , .° °

-..- •- .•.



UNCLAS SI FIED
St'ZURIT% CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSI FIED ________________________

2. SEC.RiTN CLASSIFICATION AUTHORITY 3 DISTRIBUTION/A VAiLABIL ITY OF REPORT

Approved for public release; distribution.
2b DECLASSIFICATIONIOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBEAIS)

6s NME F PRFORINGORGNIZAinN Gt)OFFIE SMBO 7aNAME OF MONITORING ORGANIZATION

3STATE UNIVERSITY OF NEW YORK IJ(appI.cable,

* AT STOXNY BROOJK Air Force Office of Scientific Researc:L

6, ADURESS L.1, tat, o,,d /[ C 76 ADDRESS WiCII -Siar and 7/1 Caode,

D1yT. OF AppLIFD MATHETICS & STATISTICS Directorate ti Mathematical 6, Informiti
STATE UNIvERSITY OF NUW YORK AT Sciences, Bolling AFB DC 20332-6448

STEONY BROOK, STIONY BROOK, N.Y. 11794__ _________________-

8. NAME OF I qNGSPON5ORitNG 8b OFF ICE SYMBOL 9. PROCUREMENT INSTRUMENT IDIENT.FICATION NUMBER3

Al; OS NMl AFIOSR 84-0243

t1k 43MIRts" -'I,.1 '/11 , 1 10 SOURCE OF FuNCONG- NOS ________

PROGRAM PROJECT TASK W~

E.E ME NT NO I NO NO

__61 1(i' 230 4

Reliability Importance f or Continuum Structure Functions
1. PLRS()NA.L . ,I2

Chul KIM and Laurence A. Baxter
13. 1 PE ,-1 REP,11 Jr, ~1 TIME COVERED 114 DAT F EPRT.-.I. a, AG OU

Technicad FROM TO __ -T4~
16 SIPLILN A'~ N.-TATICN

P i7 ; -S A T . SOIrj l 1R S U B JE C T T E R M S C o n i nue~ u nI IntI., r"l it 'ncci , and adenifi f by block ,n wm be r,

19 ABlST RACT I(Qnfilne onl reverse it necessary and identify by block n..mberi

A continuum structure function is a nondecreasing mapping from the

unit hypercube to the unit interval. A definition of the reliability

importance, R.(~ say, of component i at level ct (OcE<l ) is proposed.

Some properties of this function are deduced, in particular conditions

under which lrn Ri(a~) 1 i in R.(at) =0 and conditions under which

R.(ai) is positive (O<a~cl).

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCk.ASSII-IED,'UNLIMITED SAME AS RPT LOTIC USERS UNCLASSIFIED

22s NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Major B. W. Woodruff (202) 767- 5027 c

DD FORM-1-473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UCASFE
SECURITY CLASSIFICATION OF TMIS PAGE



o. .- -

a..l

~FILVED...

-2 2-.? ' .

-S i. 2:)
- .

. "o. °5 T

0 . .a. . . -. . _ . . . . . .,". . . . . . .. ... . . . . . . . . . . . . . . . . . -" - '


